1. Revise earlier work on the necessary and sufficient conditions for polygons to be similar.
2. Prove :
**that a line drawn parallel to one side of a triangle divides the other two sides proportionally (and the Mid-point Theorem as a special case of the converse of this theorem);
**that equiangular triangles are similar;
that triangles with sides in proportion are similar
•The proofs of theorems labelled with ** are examinable.